Highly stretchable, printable nanowire array optical polarizers.

نویسندگان

  • Soonshin Kwon
  • Dylan Lu
  • Zhelin Sun
  • Jie Xiang
  • Zhaowei Liu
چکیده

Designing optical components such as polarizers on substrates with high mechanical deformability have potential to realize new device platforms in photonics, wearable electronics, and sensors. Conventional manufacturing approaches that rely highly on top-down lithography, deposition and the etching process can easily confront compatibility issues and high fabrication complexity. Therefore, an alternative integration scheme is necessary. Here, we demonstrate fabrication of highly flexible and stretchable wire grid polarizers (WGPs) by printing bottom-up grown Ge or Ge/Si core/shell nanowires (NWs) on device substrates in a highly dense and aligned fashion. The maximum contrast ratio of 104 between transverse electric (TE) and transverse magnetic (TM) fields and above 99% (maximum 99.7%) of light blocking efficiency across the visible spectrum range are achieved. Further systematic analyses are performed both in experimental and numerical models to reveal the correspondence between physical factors (coverage ratio of NW arrays and diameter) and polarization efficiency. Moreover, we demonstrate distinctive merits of our approach: (i) high flexibility in the choice of substrates such as glass, plastic, or elastomer; (ii) easy combination with additional novel functionalities, for example, air permeability, flexibility/stretchability, biocompatibility, and a skin-like low mechanical modulus; (iii) selective printing of polarizers on a designated local area.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity

High-performance photodetectors are critical for high-speed optical communication and environmental sensing, and flexible photodetectors can be used for a wide range of portable or wearable applications. Here we demonstrate the all-printable fabrication of polycrystalline nanowire-based high-performance photodetectors on flexible substrates. Systematic investigations have shown their ultra-high...

متن کامل

Ag/Au/Polypyrrole Core-shell Nanowire Network for Transparent, Stretchable and Flexible Supercapacitor in Wearable Energy Devices

Transparent and stretchable energy storage devices have attracted significant interest due to their potential to be applied to biocompatible and wearable electronics. Supercapacitors that use the reversible faradaic redox reaction of conducting polymer have a higher specific capacitance as compared with electrical double-layer capacitors. Typically, the conducting polymer electrode is fabricate...

متن کامل

Highly conductive, printable and stretchable composite films of carbon nanotubes and silver.

Conductive films that are both stretchable and flexible could have applications in electronic devices, sensors, actuators and speakers. A substantial amount of research has been carried out on conductive polymer composites, metal electrode-integrated rubber substrates and materials based on carbon nanotubes and graphene. Here we present highly conductive, printable and stretchable hybrid compos...

متن کامل

Stretchable active-matrix organic light-emitting diode display using printable elastic conductors.

Stretchability will significantly expand the applications scope of electronics, particularly for large-area electronic displays, sensors and actuators. Unlike for conventional devices, stretchable electronics can cover arbitrary surfaces and movable parts. However, a large hurdle is the manufacture of large-area highly stretchable electrical wirings with high conductivity. Here, we describe the...

متن کامل

Biomimicking Topographic Elastomeric Petals (E‐Petals) for Omnidirectional Stretchable and Printable Electronics

Elastomeric petals directly replicated from natural rose petal are new versatile substrates for stretchable and printable electronics. Compared with conventional flat polydimethylsiloxane substrates, elastomeric petals have biomimicking topographic surfaces that can effectively inhibit the propagation of microcracks formed in the conducting layer, which is deposited on top, regardless of the ty...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nanoscale

دوره 8 35  شماره 

صفحات  -

تاریخ انتشار 2016